技术详细介绍
一、成果简介: 1.研究了利用模糊脉冲控制分析Takagi–Sugeno (T-S)模型的混沌系统的镇定问题,并且通过比较判据来研究一般非线性脉冲控制系统稳定性问题。然后提出了一种新的基于T-S模型的混沌系统的脉冲控制方案,给出了T-S模糊模型镇定的一些充分条件。从理论上和数值实例中验证了我们结论的低保守性。此外,我们还估计了稳定域的脉冲间隔,通过数值仿真结果说明了我们在相同脉冲控制情况下,我们所需要的脉冲间隔远远大于现有的相关结果,从而大大降低了脉冲的频率,减小能耗。 2.利用自适应反馈控制技术和参数估计,建立了带有噪声的模糊人工神经网络模型的随机同步,并且将该项技术应用到安全通讯问题。 3.研究了一类在输入控制下带有时滞的的线性时变脉冲系统的可控性。给出了此类系统的可控性的充要条件。特殊情况下,我们对线性时变脉冲系统和线性时不变的脉冲时滞系统也展开了讨论,并且得到的一些关于系统系数矩阵的简单判据,减小了一些现有结论的保守性。更重要的是,本文显示时滞输入控制有助于实现脉冲系统的可控性。即不带时滞的系统是不可控的,那么输入中的时滞在一定的条件下可以导致系统可控。 二、10篇代表作论文目录 [1] Yang Liu,Shouwei Zhao,Jianquan Lu,A new fuzzy impulsive control of chaotic systems based on T-S fuzzy model,IEEE Trans. Fuzzy Syst. 19 (2011)393-398. . [2] Y. H. Xia,Zijiang Yang,Maoan Han,Lag synchronization of chaotic delayed Yang-Yang type fuzzy neural networks with noise perturbation based on adaptive control and parameter identification,IEEE Transactions on Neural Networks,20:7(2009),1165-1180. [3] Y.H. Xia,Z. Yang,M. Han,Synchronization schemes for coupled identical Yang–Yang type fuzzy cellular neural networks,Communications in Nonlinear Science and Numerical Simulation,14: 9-10( 2009),3645-3659. [4] Yang Liu,Shouwei Zhao,Controllability for a class of linear time-varying impulsive systems with time delay in control input,IEEE Trans. Autom. Control 56(2)(2011)395-399. [5] Yang Liu,Shouwei Zhao,Controllability analysis of linear time-varying systems with multiple time delays and impulsive effects,Nonl. Anal. RWA,13 (2012),558-568. (SCI 1区Top,EI). [6] Yang Liu,Shouwei Zhao,A new approach to practical stability of impulsive functional differential equations in terms of two measures,Journal of Computational and Applied Mathematics 223 (2009)449–458. . [7] Y H,Xia,Zhengkun,Huang,Maoan Han,Exponential p-stability of delayed Cohen-Grossberg-type BAM neural networks with impulses,Chaos,Solitons & Fractals ,38:3 (2008),806-818. [8] Y.H. Xia,Impulsive effect on the delayed Cohen-Grossberg-type BAM neural networks,Neurocomputing,73 (2010)2754–2764. [9] Y H,Xia,J. Cao,S. Cheng,Global exponential stability of delayed cellular neural networks with impulses,Neurocomputing,70 (2007)2495-2501. [10] Bo Wu,Yang Liu,Jianquan Lu,Impulsive control of chaotic systems and its applications in synchronization,Chin. Phys. B 20 (2011)050508 三、其他相关论文 [1] Yang Liu,Shouwei Zhao,T–S fuzzy model-based impulsive control for chaotic systems and its application,Math. Comp. Sim.,81: (2011)2507-2516. (SCI 3区,EI). [2] Hang Hua,Yang Liu,Jianquan Lu,Junting Zhu,A new impulsive synchronization criterion for T–S fuzzy model and its applications,Applied Mathematical Modelling,37 (2013)8826–8835. (SCI 2区,EI). [3] Bo Wu,Yang Liu,Jianquan Lu,New results on global exponential stability for impulsive cellular neural networks with any bounded time-varying delays,Math. Comp. Mod.,55 (2012),pp. 837-843 (SCI 2区,EI). [4] Yang Liu,Shouwei Zhao,Algebraic conditions on the controllability for a type of discrete-continuous systems with delays,International J. Adaptive Control and Signal Processing,2012;26:469–481. (SCI 3区,EI) [5]. Hongwei Chen,Yang Liu,and Jianquan Lu,Synchronization criteria for two Boolean networks based on logical control,Int. J. Bifurcat. Chaos,23(11),2013: 1350178. (SCI 3区,EI).
一、成果简介: 1.研究了利用模糊脉冲控制分析Takagi–Sugeno (T-S)模型的混沌系统的镇定问题,并且通过比较判据来研究一般非线性脉冲控制系统稳定性问题。然后提出了一种新的基于T-S模型的混沌系统的脉冲控制方案,给出了T-S模糊模型镇定的一些充分条件。从理论上和数值实例中验证了我们结论的低保守性。此外,我们还估计了稳定域的脉冲间隔,通过数值仿真结果说明了我们在相同脉冲控制情况下,我们所需要的脉冲间隔远远大于现有的相关结果,从而大大降低了脉冲的频率,减小能耗。 2.利用自适应反馈控制技术和参数估计,建立了带有噪声的模糊人工神经网络模型的随机同步,并且将该项技术应用到安全通讯问题。 3.研究了一类在输入控制下带有时滞的的线性时变脉冲系统的可控性。给出了此类系统的可控性的充要条件。特殊情况下,我们对线性时变脉冲系统和线性时不变的脉冲时滞系统也展开了讨论,并且得到的一些关于系统系数矩阵的简单判据,减小了一些现有结论的保守性。更重要的是,本文显示时滞输入控制有助于实现脉冲系统的可控性。即不带时滞的系统是不可控的,那么输入中的时滞在一定的条件下可以导致系统可控。 二、10篇代表作论文目录 [1] Yang Liu,Shouwei Zhao,Jianquan Lu,A new fuzzy impulsive control of chaotic systems based on T-S fuzzy model,IEEE Trans. Fuzzy Syst. 19 (2011)393-398. . [2] Y. H. Xia,Zijiang Yang,Maoan Han,Lag synchronization of chaotic delayed Yang-Yang type fuzzy neural networks with noise perturbation based on adaptive control and parameter identification,IEEE Transactions on Neural Networks,20:7(2009),1165-1180. [3] Y.H. Xia,Z. Yang,M. Han,Synchronization schemes for coupled identical Yang–Yang type fuzzy cellular neural networks,Communications in Nonlinear Science and Numerical Simulation,14: 9-10( 2009),3645-3659. [4] Yang Liu,Shouwei Zhao,Controllability for a class of linear time-varying impulsive systems with time delay in control input,IEEE Trans. Autom. Control 56(2)(2011)395-399. [5] Yang Liu,Shouwei Zhao,Controllability analysis of linear time-varying systems with multiple time delays and impulsive effects,Nonl. Anal. RWA,13 (2012),558-568. (SCI 1区Top,EI). [6] Yang Liu,Shouwei Zhao,A new approach to practical stability of impulsive functional differential equations in terms of two measures,Journal of Computational and Applied Mathematics 223 (2009)449–458. . [7] Y H,Xia,Zhengkun,Huang,Maoan Han,Exponential p-stability of delayed Cohen-Grossberg-type BAM neural networks with impulses,Chaos,Solitons & Fractals ,38:3 (2008),806-818. [8] Y.H. Xia,Impulsive effect on the delayed Cohen-Grossberg-type BAM neural networks,Neurocomputing,73 (2010)2754–2764. [9] Y H,Xia,J. Cao,S. Cheng,Global exponential stability of delayed cellular neural networks with impulses,Neurocomputing,70 (2007)2495-2501. [10] Bo Wu,Yang Liu,Jianquan Lu,Impulsive control of chaotic systems and its applications in synchronization,Chin. Phys. B 20 (2011)050508 三、其他相关论文 [1] Yang Liu,Shouwei Zhao,T–S fuzzy model-based impulsive control for chaotic systems and its application,Math. Comp. Sim.,81: (2011)2507-2516. (SCI 3区,EI). [2] Hang Hua,Yang Liu,Jianquan Lu,Junting Zhu,A new impulsive synchronization criterion for T–S fuzzy model and its applications,Applied Mathematical Modelling,37 (2013)8826–8835. (SCI 2区,EI). [3] Bo Wu,Yang Liu,Jianquan Lu,New results on global exponential stability for impulsive cellular neural networks with any bounded time-varying delays,Math. Comp. Mod.,55 (2012),pp. 837-843 (SCI 2区,EI). [4] Yang Liu,Shouwei Zhao,Algebraic conditions on the controllability for a type of discrete-continuous systems with delays,International J. Adaptive Control and Signal Processing,2012;26:469–481. (SCI 3区,EI) [5]. Hongwei Chen,Yang Liu,and Jianquan Lu,Synchronization criteria for two Boolean networks based on logical control,Int. J. Bifurcat. Chaos,23(11),2013: 1350178. (SCI 3区,EI).