[01899667]一种基于机器学习的网络用户安全状态评估方法
交易价格:
面议
所属行业:
网络
类型:
发明专利
技术成熟度:
正在研发
专利所属地:中国
专利号:CN201610479747.9
交易方式:
技术转让
联系人:
进入空间
所在地:
- 服务承诺
- 产权明晰
-
资料保密
对所交付的所有资料进行保密
- 如实描述
技术详细介绍
本发明公开了一种基于机器学习的网络用户安全状态评估方法,包括:基于确定的风险传播源u和其传播时间t,建立网络风险的微观传播模型;基于所述传播源,对所述微观传播模型进行多轮的模拟传播;传播结束后,提取指定的特征属性及其对应的特征值形成特征向量;将提取到的特征向量输入到分类器中进行分类训练,生成可以判定新输入特征向量类属的分类规则;实际传播事件发生t时间后,提取网络中所有未被监控用户对应的特征向量;将提取到的特征向量输入训练好的分类器进行分类,获得所有未被监控用户安全状态的估计值。本发明方法通过部分用户的安全状态信息来估计网络中其他用户的安全状态,从而迅速有效地对高风险用户进行处理,阻止风险的传播。
本发明公开了一种基于机器学习的网络用户安全状态评估方法,包括:基于确定的风险传播源u和其传播时间t,建立网络风险的微观传播模型;基于所述传播源,对所述微观传播模型进行多轮的模拟传播;传播结束后,提取指定的特征属性及其对应的特征值形成特征向量;将提取到的特征向量输入到分类器中进行分类训练,生成可以判定新输入特征向量类属的分类规则;实际传播事件发生t时间后,提取网络中所有未被监控用户对应的特征向量;将提取到的特征向量输入训练好的分类器进行分类,获得所有未被监控用户安全状态的估计值。本发明方法通过部分用户的安全状态信息来估计网络中其他用户的安全状态,从而迅速有效地对高风险用户进行处理,阻止风险的传播。