[00275317]一种在取证场景下自动分析未知恶意程序特征的方法
交易价格:
面议
所属行业:
分析仪器
类型:
发明专利
技术成熟度:
正在研发
专利所属地:中国
专利号:CN201410696330.9
交易方式:
技术转让
技术转让
技术入股
联系人:
南京大学
进入空间
所在地:江苏南京市
- 服务承诺
- 产权明晰
-
资料保密
对所交付的所有资料进行保密
- 如实描述
技术详细介绍
本发明提供了一种在取证场景下自动分析未知恶意程序特征的方法;包括下列步骤1)选择关键动态链接库并建立动态链接库数据模型;2)对恶意软件进程进行聚类分析得到分类;3)获取恶意软件进程特征并进行取证分析。与现有的恶意软件分析取证方法相比,本发明通过对动态链接库数据进行聚类实现了在无先验知识的情况下基于恶意软件进程自身特点的自动分类,并能够通过频繁项集挖掘的方式,在高层语义上对恶意软件行为进行解释;此外,本发明还能为恶意软件取证提供信息和线索;本发明特别适用于无先验知识和大规模自动化取证的场景;实践证明在常规应用场景下,本方法能达到超过百分之九十以上的准确率而时间消耗仅为数秒。
本发明提供了一种在取证场景下自动分析未知恶意程序特征的方法;包括下列步骤1)选择关键动态链接库并建立动态链接库数据模型;2)对恶意软件进程进行聚类分析得到分类;3)获取恶意软件进程特征并进行取证分析。与现有的恶意软件分析取证方法相比,本发明通过对动态链接库数据进行聚类实现了在无先验知识的情况下基于恶意软件进程自身特点的自动分类,并能够通过频繁项集挖掘的方式,在高层语义上对恶意软件行为进行解释;此外,本发明还能为恶意软件取证提供信息和线索;本发明特别适用于无先验知识和大规模自动化取证的场景;实践证明在常规应用场景下,本方法能达到超过百分之九十以上的准确率而时间消耗仅为数秒。