X为了获得更好的用户体验,请使用火狐、谷歌、360浏览器极速模式或IE8及以上版本的浏览器
帮助中心 | 关于我们
欢迎来到辽阳市科技创新服务平台,请 登录 | 注册
尊敬的 , 欢迎光临!  [会员中心]  [退出登录]
当前位置: 首页 >  科技成果  > 详细页

[00275504]一种基于状态转移与神经网络的汉语组块分析方法

交易价格: 面议

所属行业: 分析仪器

类型: 发明专利

技术成熟度: 正在研发

专利所属地:中国

专利号:CN201610324281.5

交易方式: 技术转让 技术转让 技术入股

联系人: 南京大学

进入空间

所在地:江苏南京市

服务承诺
产权明晰
资料保密
对所交付的所有资料进行保密
如实描述
|
收藏
|

技术详细介绍

本发明提出了一种基于状态转移与神经网络的汉语组块分析方法,包括:将组块分析任务转换成序列化标注任务,使用基于状态转移的框架对句子进行标注,在标注的过程中使用前向神经网络来对每个状态将要进行的转移操作进行打分,并将利用双向长短记忆神经网络模型学习到的词以及词性标注的分布式表示特征作为标注模型的附加信息特征,从而提高组块分析的精确度。对比其它汉语组块分析技术,该汉语组块分析方法使用的基于状态转移的框架可以更灵活地添加组块级别的特征,同时神经网络的使用可以自动学到特征之间的组合方式,双向长短记忆神经网络模型的利用引入了有用的附加信息特征,三者的结合有效提高了组块分析的准确度。
本发明提出了一种基于状态转移与神经网络的汉语组块分析方法,包括:将组块分析任务转换成序列化标注任务,使用基于状态转移的框架对句子进行标注,在标注的过程中使用前向神经网络来对每个状态将要进行的转移操作进行打分,并将利用双向长短记忆神经网络模型学习到的词以及词性标注的分布式表示特征作为标注模型的附加信息特征,从而提高组块分析的精确度。对比其它汉语组块分析技术,该汉语组块分析方法使用的基于状态转移的框架可以更灵活地添加组块级别的特征,同时神经网络的使用可以自动学到特征之间的组合方式,双向长短记忆神经网络模型的利用引入了有用的附加信息特征,三者的结合有效提高了组块分析的准确度。

推荐服务:

主办单位:辽阳市科学技术局

技术支持单位:科易网

辽ICP备16017206号-1

辽公网安备 21100302203138号

关于我们

平台简介

联系我们

客服咨询

400-649-1633

工作日:08:30-21:00

节假日:08:30-12:00

13:30-17:30