X为了获得更好的用户体验,请使用火狐、谷歌、360浏览器极速模式或IE8及以上版本的浏览器
帮助中心 | 关于我们
欢迎来到辽阳市科技创新服务平台,请 登录 | 注册
尊敬的 , 欢迎光临!  [会员中心]  [退出登录]
当前位置: 首页 >  科技成果  > 详细页

[00294276]一种基于半监督学习的行人检测方法

交易价格: 面议

所属行业: 分析仪器

类型: 发明专利

技术成熟度: 正在研发

专利所属地:中国

专利号:CN201710052773.8

交易方式: 技术转让 技术转让 技术入股

联系人: 华南理工大学

进入空间

所在地:广东广州市

服务承诺
产权明晰
资料保密
对所交付的所有资料进行保密
如实描述
|
收藏
|

技术详细介绍

摘要:本发明公开了一种基于半监督学习的行人检测方法,首先获取源图像集的训练样本和所属类别,将目标场景图像集中的一部分图像进行行人标记,获取目标场景图像对应的训练样本和样本特征;其次由源图像集的训练样本训练生成决策森林,目标场景图像集中知晓所属类别的训练样本对决策森林中的决策树进行筛选,重组后产生新的决策森林;再者通过新的决策森林对目标场景图像集中未知所属类别训练样本进行评分,将置信度高的训练样本标记为行人训练样本;然后通过目标场景图像集中知晓输送类别的训练样本以及上述行人训练样本训练神经网络;最后测试样本输入至新的决策森林,将置信度高的测试样本通过神经网络得出行人检测结果。具有行人检测精度高的优点。
摘要:本发明公开了一种基于半监督学习的行人检测方法,首先获取源图像集的训练样本和所属类别,将目标场景图像集中的一部分图像进行行人标记,获取目标场景图像对应的训练样本和样本特征;其次由源图像集的训练样本训练生成决策森林,目标场景图像集中知晓所属类别的训练样本对决策森林中的决策树进行筛选,重组后产生新的决策森林;再者通过新的决策森林对目标场景图像集中未知所属类别训练样本进行评分,将置信度高的训练样本标记为行人训练样本;然后通过目标场景图像集中知晓输送类别的训练样本以及上述行人训练样本训练神经网络;最后测试样本输入至新的决策森林,将置信度高的测试样本通过神经网络得出行人检测结果。具有行人检测精度高的优点。

推荐服务:

主办单位:辽阳市科学技术局

技术支持单位:科易网

辽ICP备16017206号-1

辽公网安备 21100302203138号

关于我们

平台简介

联系我们

客服咨询

400-649-1633

工作日:08:30-21:00

节假日:08:30-12:00

13:30-17:30