[00335877]一种基于余弦相似度加权的线性判别分析降维方法
交易价格:
面议
所属行业:
分析仪器
类型:
发明专利
技术成熟度:
通过小试
专利所属地:中国
专利号:CN201710438458.9
交易方式:
资料待完善
联系人:
大连海事大学
进入空间
所在地:辽宁大连市
- 服务承诺
- 产权明晰
-
资料保密
对所交付的所有资料进行保密
- 如实描述
技术详细介绍
摘要:本发明公开了一种基于余弦相似度加权的线性判别分析降维方法,其包括步骤1、读取数据集X中的各样本待获取的初始特征F;步骤2、基于LLE算法,对初始特征F进行初步降维以获得临时特征F′;步骤3、获取样本特征数据即将临时特征F′作为输入特征;步骤4、计算出数据集X中每类样本均值mi和总体样本均值m;步骤5、基于样本特征数据以及mi、m,获得基于余弦相似度加权的类内散度矩阵以及对应的类间散度矩阵;步骤6、创建基于余弦相似度加权的目标函数对样本特征数据进行进一步降维;步骤7、根据步骤6所产生的投影矩阵将输入特征映射到新的维度空间。本发明具有更好的类内耦合度和类间离散度,且达到了更好的降维效果。
摘要:本发明公开了一种基于余弦相似度加权的线性判别分析降维方法,其包括步骤1、读取数据集X中的各样本待获取的初始特征F;步骤2、基于LLE算法,对初始特征F进行初步降维以获得临时特征F′;步骤3、获取样本特征数据即将临时特征F′作为输入特征;步骤4、计算出数据集X中每类样本均值mi和总体样本均值m;步骤5、基于样本特征数据以及mi、m,获得基于余弦相似度加权的类内散度矩阵以及对应的类间散度矩阵;步骤6、创建基于余弦相似度加权的目标函数对样本特征数据进行进一步降维;步骤7、根据步骤6所产生的投影矩阵将输入特征映射到新的维度空间。本发明具有更好的类内耦合度和类间离散度,且达到了更好的降维效果。